There are four problems for 50 points. Please show your work in a well organized way. No work, no credit.

1. (16 points) Mark each statement True or False. Justify each answer.

 (1). We can always define an order relation on a field to make it an ordered field.
 False. For example, we cannot introduce an order relation to make \(\mathbb{C} \), the set of complex numbers, an ordered field. This is based on Problem 11.10.

 (2). Every nonempty finite set has a maximum and a minimum.
 True. Note that a nonempty finite set contains only finitely many elements (remark: \((0, 1)\) is not a finite set!), by sorting all the elements in the set, we know that it has a maximum and a minimum.

 (3). Suppose \(S \subseteq \mathbb{R} \) contains infinitely many points, then \(S' \neq \emptyset \).
 False. For example, \(\mathbb{N} \) contains infinitely many points, but \(\mathbb{N}' = \emptyset \).

 (4) Let \(I \) be the set of isolated points of \(S \subseteq \mathbb{R} \), then \(\text{int} S \cap I = \emptyset \).
 True. Because \(\text{int} S \subseteq S' \) and \(S' \cap I = \emptyset \).

2. (12 points)

 (1). Prove the sum of a rational number and an irrational number is irrational.

 (2). Prove that for any two distinct real numbers \(x < y \), there exists an irrational number of the form \(r + \sqrt{3} \) sitting between \(x \) and \(y \), where \(r \in \mathbb{Q} \) is rational.

 Proof

 (1). Let \(r \in \mathbb{Q} \) and \(w \in \mathbb{R} \setminus \mathbb{Q} \), we prove \(r + w \in \mathbb{R} \setminus \mathbb{Q} \) by contradiction. Suppose \(r + w \in \mathbb{Q} \), we have \(w = (w + r) - r \in \mathbb{Q} \) since \(\mathbb{Q} \) is a field. That contradicts that \(w \in \mathbb{R} \setminus \mathbb{Q} \). Therefore, \(r + w \) is irrational.

 (2). Since \(x < y \), we have \(x - \sqrt{3} < y - \sqrt{3} \). By the Density of Rational Numbers, \(\exists r \in \mathbb{Q} \) such that \(x - \sqrt{3} < r < y - \sqrt{3} \), which implies \(x < r + \sqrt{3} < y \). \(\Box \)
3. (12 points) Let \(A \subseteq \mathbb{R} \) and \(B \subseteq \mathbb{R} \) be two bounded subsets of \(\mathbb{R} \). Define
\[
C = \{ x - y : x \in A, y \in B \}
\]
Prove that \(C \) is bounded in \(\mathbb{R} \), and represent \(\sup C \) in terms of the bounds of \(A \) and \(B \).

Proof Since \(A \subseteq \mathbb{R} \) and \(B \subseteq \mathbb{R} \) are bounded, by the Completeness Axiom of \(\mathbb{R} \), we have \(\inf A, \sup A, \inf B \) and \(\sup B \) exist and are real. Furthermore, \(\forall x \in A, \forall y \in B \), we have \(\inf A \leq x \leq \sup A \), \(\inf B \leq y \leq \sup B \).

By the way we define \(C \), \(\forall c \in C \), \(\exists x_c \in A \) and \(y_c \in B \) such that \(c = x_c - y_c \), which gives us
\[
\inf A - \sup B \leq c \leq \sup A - \inf B.
\]

By the definition of a bounded set and the completeness, we prove \(C \) is bounded, and
\[
\inf A - \sup B \leq c \leq \sup A - \inf B.
\]

Note that \(\forall \varepsilon > 0, \exists x_\varepsilon \in A \) such that \(x_\varepsilon > \sup A - \varepsilon \), and for the above \(\varepsilon \), \(\exists y_\varepsilon \in B \) such that \(y_\varepsilon < \inf B + \varepsilon \). Therefore, noting that \(x_\varepsilon - y_\varepsilon \in C \), we have
\[
\sup C \geq x_\varepsilon - y_\varepsilon \geq (\sup A - \varepsilon) - (\inf B + \varepsilon) = \sup A - \inf B - 2\varepsilon,
\]
which implies
\[
\sup C \geq \sup A - \inf B.
\]
Consequently, we have
\[
\sup C = \sup A - \inf B.
\]
\[\Box\]

Remark: To make the answer shorter, a key observation is that \(C \) is the Minkowski sum of \(A \) and \(-B \). By Theorem 12.7 and Problem 12.7, we have
\[
\sup C = \sup A + \sup(-B) = \sup A - \inf B.
\]

4. (10 points) Let \(S \subseteq \mathbb{R} \). Prove that if \(x \in S' \cap (\mathbb{R}\setminus S) \), then \(x \in \text{bd}S \).

Proof If \(x \in S' \cap (\mathbb{R}\setminus S), \forall \varepsilon > 0 \), by \(x \in S \), we have \(N(x, \varepsilon) \cap S \supseteq N^*(x, \varepsilon) \cap S \neq \emptyset \); by \(x \in \mathbb{R}\setminus S \), we have \(N(x, \varepsilon) \cap (\mathbb{R}\setminus S) \supseteq \{x\} \neq \emptyset \). Therefore, \(x \in \text{bd}S \). \[\Box\]